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Abstract
A set of recursive relations satisfied by Selberg-type integrals involving
monomial symmetric polynomials are derived, generalizing previous results
in Aomoto (1987) SIAM J. Math. Anal. 18 545–49 and Iguri (2009) Lett.
Math. Phys. 89 141–58. These formulas provide a well-defined algorithm for
computing Selberg–Schur integrals whenever the Kostka numbers relating
Schur functions and the corresponding monomial polynomials are explicitly
known. We illustrate the usefulness of our results discussing some interesting
examples.

PACS numbers: 02.30.Gp, 02.70.Pt, 11.25.Hf, 11.25.−w, 73.43.Nq

1. Introduction

The Selberg integral and its generalizations have played a central role both in pure and applied
mathematics. Their applications run from the proof of the Mehta–Dyson conjecture and
several cases of the Macdonald conjectures [2, 20, 22] to the study of some q-analogs of
constant term identities, through Calogero–Sutherland quantum many body models [7, 14,
15, 17, 27, 31], orthogonal polynomials theory [24, 28], hyperplane arrangements [25] and
random matrix theory [4, 9, 18, 19]. They also have a deep connection to the Knizhnik–
Zamolodchikov equations [23, 32] with the corresponding implications in conformal field
theory and even string theory [5, 6, 8, 12, 13, 21, 29, 30]. See [10] for a comprehensive review
on the relevance of the Selberg integral and its applications.

The aim of this paper is to study the Selberg-type integral with the integrand dressed up
with a symmetric function, namely, to study integrals of the form Jf ≡ J (N)(a, b, ρ; f ):

Jf =
∫

�

f (y1, . . . , yN)

N∏
i=1

ya−1
i (1 − yi)

b−1
∏

1�i<j�N

|yi − yj |2ρ dy1 ∧ · · · ∧ dyN, (1)
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where f (y1, . . . , yN) is a symmetric polynomial, the integral is taken over the N-dimensional
open domain4 � = (0, 1)N and a, b and ρ are complex numbers. For simplicity, we will denote
the function

∏N
i=1 ya−1

i (1−yi)
b−1 ∏

1�i<j�N |yi −yj |2ρ by �(y), the N-form dy1 ∧· · ·∧dyN

by dy and the polynomial f (y1, . . . , yN) by f (y).
Among the basis for the space of symmetric polynomials, the Schur basis plays a special

role in this context. The importance of Selberg–Schur integrals was stated in [30] when
studying the non-triviality of the integral representation of the intertwining operators between
the Fock space representations of the Virasoro algebra and in [3], in a more general setting,
when analyzing the Fock space resolutions of the ŝl(n) irreducible highest-weight modules.
As expected, they also appear when computing correlation functions on the sphere in related
Wess–Zumino–Novikov–Witten models [12, 13]. Given a partition λ we will denote the Schur
polynomial associated with it by sλ(y) and the corresponding Selberg–Schur integral by Jλ.

The case λ = 0 corresponds to the classical integral considered by Selberg in [26]. The
analytic expression he found for this integral is

J0 =
∫

�

�(y) dy =
N∏

i=1

�(a + (N − i)ρ)�(b + (N − i)ρ)�(iρ + 1)

�(a + b + (2N − i − 1)ρ)�(ρ + 1)
, (2)

and it is well defined whenever a, b and ρ satisfy

�(a),�(b) > 0 and �(ρ) > − min

{
1

N
,

�(a)

N − 1
,

�(b)

N − 1

}
, (3)

the second inequality having meaning for N > 1. From now on we assume that these
conditions always hold.

When λ = (1m1) with 0 � m1 � N , Schur polynomials reduce to elementary symmetric
polynomials, i.e.

s(1m1 )(y) ≡ em1(y) = 1

N !

(
N

m1

) ∑
σ∈SN

m1∏
i=1

yσ(i), (4)

where SN is the set of permutations of the set {1, 2, . . . , N} and e0(y) = 1. In this case,
Aomoto [1] showed that

J(1m1 ) =
∫

�

em1(y)�(y) dy = J0

(
N

m1

) m1∏
i=1

a + (N − i)ρ

a + b + (2N − 1 − i)ρ
. (5)

A further extension of Selberg integral, by far the most general one, has been computed
by Kadell in [16] and it involves Jack functions. It reads∫

�

P
(1/ρ)

λ (y)�(y) dy = J0P
(1/ρ)

λ (1N)
[a + (N − 1)ρ](ρ)

λ

[a + b + 2(N − 1)ρ](ρ)
λ

, (6)

where λ is an arbitrary partition, P
(1/ρ)

λ (y) is a Jack polynomial and [a](ρ)
λ is a generalized

Pochhammer symbol, which is defined as

[a](ρ)
λ =

∏
i�1

(a + (1 − i)ρ)λi
, (7)

(a)n being the standard Pochhammer symbol, namely, (a)n = a(a + 1) · · · (a + n − 1) with
(a)0 = 1. When ρ = 1 we have P

(1/ρ)

λ (y) = sλ(y) so that (6) gives

Jλ = J0sλ(1
N)

[a + (N − 1)](1)
λ

[a + b + 2N − 2](1)
λ

. (8)

4 Selberg-type integrals are sometimes defined over the N-dimensional simplex {(y1, . . . , yN ) ∈ R
N | 0 < y1 <

· · · < yN < 1}. From the symmetry of the integrand under a permutation of the variables, we get that these integrals
differ by a factor of 1/N !.
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More recently, it was proved in [11] that for the case λ = (2m2 1m1), 0 � m1 + m2 � N ,
one has

J(2m2 1m1 ) = J0mλ(1
N)

[a + (N − 1)ρ](ρ)
λ

[a + b + 2(N − 1)ρ](ρ)
λ

[a + b + (N − 2)ρ](ρ)

(1m2 )

[a + b + (2N − m1 − m2 − 2)ρ](ρ)

(1m2 )

× 4F3

[−m2,−N + m1 + m2, α + β + γ + 2N − m2 − 1, α + N − m2 + 1

α + β + N − m2 − 1, α + γ + N − m2,m1 + 2

]
, (9)

where α = a/ρ, β = b/ρ, γ = 1/ρ, the hypergeometric series 4F3 is evaluated at 1 and
mλ(y) denotes the monomial symmetric polynomial associated with the partition λ.

In this paper, using similar techniques as those employed in [1, 11], we find a
set of recursive formulas satisfied by generic Selberg-type integrals involving monomial
polynomials. These recursions and the fact that Schur polynomials can be uniquely
decomposed as linear combinations of monomial symmetric functions reduce the problem
of computing (1) to the problem of computing Kostka numbers while providing a well-defined
algorithm for obtaining Selberg–Schur integrals in the general case.

The paper is organized as follows. After introducing some notation we prove in
section 2 some lemmas and preliminary propositions that will be useful for obtaining in
section 3 the recursive relations we have already announced. In section 4, we illustrate the
usefulness of our results with several relevant examples.

2. Notation and preliminary lemmas

In this section we fix our conventions, we introduce some notation and we derive several
formulas that will be needed in order to prove our main results.

Despite of the fact that partitions are usually defined without trivial components, it will
be useful for our purposes to identify partitions with length �λ � N with decreasingly ordered
N-tuples with non-negative entries by defining λi = 0 for i = �λ + 1, . . . , N .

Given v ∈ R
N, v = (v1, . . . , vN), we define its (decreasingly) ordered partner [v] as the

vector (vσ(1), . . . , vσ(N)), where σ ∈ SN is any permutation satisfying vσ(1) � vσ(2) � · · · �
vσ(N). If v1, . . . , vN are all non-negative integer numbers, then [v] actually defines a partition
with length �[v] � N . We denote the standard basis of R

N by {e1, . . . , eN }, ej being the j th
unit vector.

For a partition λ let us denote by λ′ its conjugate so that λ′
k gives the number of entries

�k in λ. Note that �λ = λ′
1. If y = (y1, . . . , yN) we define

yλ =
N∏

j=1

y
λj

j =
n∏

i=0

mn−i∏
r=1

yn−i
λ′

n−i+1+r
, (10)

where n is the greatest part of λ,mk = λ′
k − λ′

k+1, k = 1, . . . , n, is the multiplicity of the part
k in λ and m0 = N . Further, let us define the following integrals:

Bλ =
∫

�

yλ�(y) dy, (11)

and, for any integer number c � 0,

Aλ(k, c) =
∫

�

yc
1

∏N
j=2 y

λj

j

y1 − yk

�(y) dy (12)

3
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and

Kλ(c) =
∫

�

yc
1

∏N
j=2 y

λj

j

1 − y1
�(y) dy. (13)

We will denote Aλ(k, λ1) simply by Aλ(k).
We will generalize [11, lemma 1] and [11, lemma 3] by proving the following.

Lemma 1. Let λ be a partition such that �λ � N and let c be a non-negative integer number.
Let 2 � k � N . Then,

Aλ(k, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1

2

λk−1−c∑
i=0

B[λ+(c+i−λ1)e1−(1+i)ek ] if c < λk,

0 if c = λk,

1

2

c−λk−1∑
i=0

B[λ+(c−1−i−λ1)e1+iek] if c > λk.

(14)

Proof. Exchanging yk and y1 in (12) and then using the symmetry of Selberg’s kernel �(y)

under the permutation of any pair of variables, we obtain

Aλ(k, c) = −
∫

�

y
λk

1 yc
k

∏N
j �=1,k y

λj

j

y1 − yk

�(y) dy. (15)

Thus, if 0 � c < λk , we get

Aλ(k, c) = −1

2

∫
�

yc
1y

c
k

(
y

λk−c
1 − y

λk−c
k

)∏N
j �=1,k y

λj

j

y1 − yk

�(y) dy, (16)

which is equivalent to

Aλ(k, c) = −1

2

λk−c−1∑
i=0

B[λ+(c+i−λ1)e1−(1+i)ek ], (17)

where we have used

y
λk−c
1 − y

λk−c
k = (y1 − yk)

λk−c−1∑
i=0

y
λk−c−1−i
1 yi

k. (18)

When c = λk it is straightforward to see that integral (12) vanishes.
If, instead, c > λk , then

Aλ(k, c) = 1

2

∫
�

y
λk

1 y
λk

k

(
y

c−λk

1 − y
c−λk

k

)∏N
j �=1,k y

λj

j

y1 − yk

�(y) dy, (19)

namely,

Aλ(k, c) = 1

2

c−λk−1∑
i=0

B[λ+(c−1−i−λ1)e1+iek ], (20)

as we wanted to prove. �

Corollary 2. Let λ be a partition with �λ � N and let 2 � k � N . Then,

Aλ(k) = 1

2

λ1−λk−1∑
i=0

B[λ−(1+i)e1+iek]. (21)

4
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Example 3. If λ = (2m2 1m1),m1 + m2 � N , then

A(2m2 1m1 )(k) =

⎧⎪⎨⎪⎩
0 if 2 � k � λ′

2,

1
2B(2m2−11m1+1) if λ′

2 + 1 � k � λ′
1,

B(2m2−11m1+1) if λ′
1 + 1 � k � N,

(22)

while lemma 1 gives, for c = 1,

A(2m2 1m1 )(k, 1) =

⎧⎪⎨⎪⎩
− 1

2B(2m2−21m1+2) if 2 � k � λ′
2,

0 if λ′
2 + 1 � k � λ′

1,

1
2B(2m2−11m1−1) if λ′

1 + 1 � k � N.

(23)

as it was already shown in [11, lemma 1] and [11, lemma 3], respectively. Furthermore, we
find

A(2m2 1m1 )(k, 0) =

⎧⎪⎨⎪⎩
−B(2m2−21m1+1) if 2 � k � λ′

2,

− 1
2B(2m2−11m1−1) if λ′

2 + 1 � k � λ′
1,

0 if λ′
1 + 1 � k � N.

(24)

Example 4. If λ = (3m3 2m2 1m1), �λ � N , then

A(3m3 2m2 1m1 )(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 2 � k � λ′

3,

1
2B(3m3−12m2+11m1 ) if λ′

3 + 1 � k � λ′
2,

B(3m3−12m2+11m1 ) if λ′
2 + 1 � k � λ′

1,

B(3m3−12m2+11m1 ) + 1
2B(3m3−12m2 1m1+2) if λ′

1 + 1 � k � N,

(25)

and lemma 1 gives

A(3m3 2m2 1m1 )(k, 2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 1

2B(3m3−22m2+21m1 ) if 2 � k � λ′
3,

0 if λ′
3 + 1 � k � λ′

2,

1
2B(3m3−12m2 1m1+1) if λ′

2 + 1 � k � λ′
1,

B(3m3−12m2 1m1+1) if λ′
1 + 1 � k � N,

(26)

A(3m3 2m2 1m1 )(k, 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−B(3m3−22m2+11m1+1) if 2 � k � λ′

3,

− 1
2B(3m3−12m2−11m1+2) if λ′

3 + 1 � k � λ′
2,

0 if λ′
2 + 1 � k � λ′

1,

1
2B(3m3−12m2 1m1 ) if λ′

1 + 1 � k � N,

(27)

and

A(3m3 2m2 1m1 )(k, 0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−B(3m3−22m2+11m1 ) − 1

2B(3m3−22m2 1m1+2) if 2 � k � λ′
3,

−B(3m3−12m2−11m1+1) if λ′
3 + 1 � k � λ′

2,

− 1
2B(3m3−12m2 1m1−1) if λ′

2 + 1 � k � λ′
1,

0 if λ′
1 + 1 � k � N.

(28)

Concerning integrals (13) we can prove the following two lemmas.

5
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Lemma 5. Let λ be any partition with �λ � N . Thus, for 0 � c � λ1,

Kλ(c) = Kλ(0) −
c−1∑
i=0

B[λ+(i−λ1)e1]. (29)

Proof. The proof of the lemma follows straightforwardly after using the substitution

yc
1

1 − y1
= 1

1 − y1
−

c−1∑
i=0

yi
1 (30)

in equation (13). �

Lemma 6. Let λ be any partition with �λ � N . For 0 � c � λ1 we have

Kλ(c) = 2ρ

b − 1

N∑
k=2

Aλ(k, c) +
a − 1 + c

b − 1
B[λ+(c−1−λ1)e1]. (31)

Proof. Since �(y) vanishes at the boundary values y1 = 0 and y1 = 1, we obtain after
applying Stokes’ theorem

0 =
∫

�

d1

⎛⎝yc
1

�∏
j=2

y
λj

j �(y) dy ′

⎞⎠
= 2ρ

N∑
k=2

Aλ(k, c) + (a − 1 + c)B[λ+(c−1−λ1)e1] − (b − 1)Kλ(c), (32)

which follows from the fact that

d1�(y) = a

y1
− b − 1

1 − y1
+ 2ρ

N∑
k=2

1

y1 − yk

. (33)

Equation (31) follows from (32). �

The following example essentially reproduces the derivation of the recurrence found
in [11] for Selberg integrals involving symmetric monomial polynomials associated with
partitions with entries �2, namely [11, lemma 4].

Example 7. Let λ = (2m2 1m1) and c = 2. Then, lemma 1 gives

(b − 1)K(2m2 1m1 )(2) = 2ρ

N∑
k=2

Aλ(k, 2) + (a + 1)B(2m2−11m1+1). (34)

By virtue of example 3 we get

(b − 1)K(2m2 1m1 )(2) = (a + 1 + ρ(2N − m1 − 2m2))B(2m2−11m1+1). (35)

Using lemma 5 we find

(b − 1)
(
K(2m2 1m1 )(0) − B(2m2−11m1 ) − B(2m2−11m1+1)

)
= (a + 1 + ρ(2N − 2m2 − m1))B(2m2−11m1+1), (36)

which is equivalent to

(b − 1)K(2m2 1m1 (0) = (a + b + ρ(2N − m1 − 2m2))B(2m2−11m1+1) + (b − 1)B(2m2−11m1 ), (37)

as proved in [11, lemma 2].

6
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In a similar way, for c = 1, lemma 1 and lemma 5 give

(b − 1)
(
K(2m2 1m1 )(0) − B(2m2−11m1 )

) = 2ρ

N∑
k=2

Aλ(k, 1) + aB(2m2−11m1 ), (38)

which is equivalent to

(b − 1)K(2m2 1m1 )(0) = −ρ(m2 − 1)B(2m2−21m1+2) + (a + b − 1 + ρ(N − m1 − m2))B(2m2−11m1 ).

(39)

After combining (37) and (39) we obtain

(a + b + ρ(2N − 2m2 − m1))B(2m2−11m1+1) = (a + ρ(N − m1 − m2))B(2m2−11m1 )

− ρ(m2 − 1)B(2m2−21m1+2), (40)

as it is proved in [11, lemma 4, equation (13)].

3. Recurrence relations for Selberg-type integrals

Formula (40) defines a recursive relation that was used in [11] for computing Selberg–Schur
integrals associated with partitions of the form λ = (2m2 1m1), 0 � m1 + m2 � N . In this
section we find a set of recurrence relations satisfied by Selberg integrals involving monomial
polynomials generalizing [11, lemma 4, equation (13)].

Theorem 8. Let λ be any partition of length �λ < N . Then, for any c such that 0 � c < λ1

we have

(b − 1)

λ1−1∑
i=c

B[λ+(i−λ1)e1] + (a − 1 + λ1)B[λ−e1] − (a − 1 + c)B[λ+(c−1−λ1)e1]

= ρ

N∑
k=2

(−1)δλk<c

max{λk,c}−min{λk,c}∑
i=1

B[λ+(max{λk,c}−i−λ1)e1+(min{λk,c}+i−1−λk)ek]

− ρ

N∑
k=2

λ1−λk∑
i=1

B[λ−ie1+(i−1)ek ], (41)

where δa<b equals 0 if a < b and it equals 1 otherwise.

Remark 9. Before proving the theorem let us emphasize that (41) is actually a well-defined
recurrence for c < λ1 for the dominance ordering on partitions, namely, all partitions appearing
in (41) are � λ.

Proof. The proof of the theorem follows the same steps as example 7. Using lemma 5 for
c = λ1 we obtain

(b − 1)

(
Kλ(0) −

λ1−1∑
i=0

B[λ+(i−λ1)e1]

)
= 2ρ

N∑
k=2

Aλ(k) + (a − 1 + λ1)B[λ−e1], (42)

which is equivalent to

(b − 1)Kλ(0) = (b − 1)

λ1−1∑
i=0

B[λ+(i−λ1)e1] + (a − 1 + λ1)B[λ−e1] + ρ

N∑
k=2

λ1−λk∑
i=1

B[λ−ie1+(i−1)ek ].

(43)

7
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On the other hand, lemma 5 for an arbitrary 0 � c < λ1 gives

(b − 1)

(
Kλ(0) −

c−1∑
i=0

B[λ+(i−λ1)e1]

)
= 2ρ

N∑
k=2

Aλ(k, c) + (a − 1 + c)B[λ+(c−1−λ1)e1], (44)

and by lemma 1 it follows that
N∑

k=2

Aλ(k, c) = −1

2

N∑
k=2,c�λk

λk−1−c∑
i=0

B[λ+(c+i−λ1)e1−(1+i)ek ]

+
1

2

N∑
k=2,c>λk

c−λk−1∑
i=0

B[λ+(c−1−i−λ1)e1+iek], (45)

so that

(b − 1)Kλ(0) = (b − 1)

c−1∑
i=0

B[λ+(i−λ1)e1] + (a − 1 + c)B[λ+(c−1−λ1)e1] − ρ

N∑
k=2,c�λk

×
λk−1−c∑

i=0

B[λ+(c+i−λ1)e1−(1+i)ek ] + ρ

N∑
k=2,c>λk

c−λk−1∑
i=0

B[λ+(c−1−i−λ1)e1+iek]. (46)

After combining equations (43) and (46) we get the desired result. �

Corollary 10. Let λ be a partition of length �λ < N with λ1 > λk for k = 2, . . . , N . Then,

(a + b + λ1 − 2)B[λ−e1] − (a + λ1 − 2)B[λ−2e1] = −ρ

N∑
k=2

λ1−λk∑
i=1

B[λ−ie1+(i−1)ek ]

+ ρ

N∑
k=2

λ1−λk−1∑
i=1

B[λ−(i+1)e1+(i−1)ek ]. (47)

Proof. The proof of the corollary follows straightforwardly after replacing c = λ1 − 1 in
equation (41). �

In the next section we give some examples showing the usefulness of these results.

4. Applications

Let us recall that any Schur polynomial can be expressed in term of monomial symmetric
polynomials as

sλ(y) =
∑
μ�λ

Kλμmμ(y), (48)

where Kλμ is the Kostka number associated with λ and μ and mμ(y) is the monomial symmetric
polynomial indexed by μ.

From the symmetry of the Selberg–Schur kernel under the permutation of any pair of
variables it follows that

Jλ =
∑
μ�λ

mμ(1N)KλμBμ, (49)

where we have exploit that mμ(y) is a symmetric polynomial, thus proving that theorem 8
provides us with a well-defined algorithm for computing Selberg–Schur integral as it was
announced in the introduction.

Let us illustrate this fact with some interesting examples.

8
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4.1. Partitions of the form (31n)

For a given positive integer n let us consider the partition (31n). The partitions μ satisfying
that μ � (31n) are (1n+3), (21n+1) and (31n). Recall from [1] that

B(1n) = J0

[a + (N − 1)ρ](ρ)

(1n)

[a + b + 2(N − 1)ρ](ρ)

(1n)

, (50)

and from [11] that

B(2n1m) = J0

[a + (N − 1)ρ](ρ)

(2n1m)

[a + b + 2(N − 1)ρ](ρ)

(2n1m)

[a + b + (N − 2)ρ](ρ)

(1n)

[a + b + (2N − m − n − 2)ρ]ρ(1n)

× 3F2

[−n,−N + m + n, α + β + γ + 2N − n − 1
α + β + N − n − 1, α + γ + N − n

]
, (51)

for any positive integer m, where, as before, α = a/ρ, β = b/ρ, γ = 1/ρ and the
hypergeometric series 3F2 is evaluated at 1.

Noting that

K(31n),(1n+3) = 1

2

(n + 2)!

n!
, (52)

K(31n),(21n+1) = n + 1, (53)

it follows from equation (49) that in order to find an expression for J(31n), we only need to find
an explicit formula for B(31n).

Applying equation (41) for λ = (41n) and c = 2 we obtain

ρ
[
2(N − n − 1)

(
B(1n+1) − B(31n) − B(21n+1)

) − n
(
2B(31n) + B(221n−1)

)
+ nB(1n+1)

]
= (b − 1)B(21n) + (b − 1)B(31n) + (a + 3)B(31n) − (a + 1)B(1n+1), (54)

namely,

B(31n) = [a + b + 2 + 2ρ(N − 1)]−1 × [
(a + 1 + ρ(2N − n − 2))B(1n+1)

− (b − 1)B(21n) − 2ρ(N − n − 1)B(21n+1) − ρnB(221n−1)

]
. (55)

Substitution of (50) and (51) into this last expression will eventually lead us to the desired
formula for B(31n).

4.2. Partitions of the form (32m)

Let m be, again, a non-negative integer number and let us consider the case of the partition
(32m). Despite of the lack of explicit expressions for the corresponding Kostka numbers, it is
straightforward to find a recurrence for B(32m).

In fact, applying theorem 8 for λ = (42m) with c = 3 we have that

B(32m) = [a + b + 2 + 2ρ(N − 1)]−1[(a + 2 + ρ(2N − m − 2))B(2m+1)

+ ρ(N − m − 1)B(2m12) − 2ρ(N − m − 1)B(2m+11)], (56)

from where a formula for B(32m) can be read.

4.3. Partitions of the form (32m1n)

Finally, let us discuss the case of partitions of the form (32m1n) with m, n > 0. Applying
again theorem 8 but now for λ = (42m1n) and c = 3 we get

9
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B(32m1n) = [a + b + 2 + 2ρ(N − 1)]−1
[
(a + 2 + ρ(2N − m − n − 2))B(2m+11n) + ρ(N − m

− n − 1)B(2m1n+2) − nρB(2m+21n−1) − 2ρ(N − m − n − 1)B(2m+11n+1)

]
. (57)

As before, using (50) and (51) an explicit formula for B(32m1n) can be derived.
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